PROBLEM SET 1

YIHANG ZHU

Exercise 1. For p an odd prime, let $\zeta \in \overline{\mathbb{F}}_{p}$ be a primitive 8 -th root of unity. Show that $\zeta+\zeta^{-1}$ represents $\sqrt{2}$. Use this to prove $\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}$.

Exercise 2. Let p be an odd prime. We view the Legendre symbol $\left(\frac{-1}{p}\right)$ as an element $\sigma \in \operatorname{Gal}(\mathbb{Q}(i) / \mathbb{Q}) \cong\{ \pm 1\}$, where -1 acts on $\mathbb{Q}(i)$ via $i \mapsto-i$. Show that $\sigma a \equiv a^{p} \bmod \mathfrak{p}$ for $a \in \mathbb{Z}[i]$ and any prime factor $\mathfrak{p} \in \mathbb{Z}[i]$ of p. (Recall the different ways p factorizes into prime factors inside $\mathbb{Z}[i]$)

Exercise 3. Prove that a UFD is integrally closed.
Exercise 4. Show that the identity $3 \cdot 7=(1+2 \sqrt{-5})(1-2 \sqrt{-5})$ gives two essentially different factorizations of 21 into irreducible elements in the ring $\mathcal{O}_{\mathbb{Q}(\sqrt{-5})}=$ $\mathbb{Z}[\sqrt{-5}]$. Therefore $\mathbb{Z}[\sqrt{-5}]$ is not a UFD.

Exercise 5. In the previous exercise, we saw that unique factorization fails in $\mathbb{Z}[\sqrt{-5}]$ because for instance

$$
3 \cdot 7=(1+2 \sqrt{-5})(1-2 \sqrt{-5})
$$

But we have the factorizations into prime ideals

$$
\begin{gathered}
(3)=(3, \sqrt{-5}+1)(3, \sqrt{-5}-1), \\
(7)=(7, \sqrt{-5}+3)(7, \sqrt{-5}-3), \\
(1+2 \sqrt{-5})=(3, \sqrt{-5}-1)(7, \sqrt{-5}-3) \\
(1-2 \sqrt{-5})=(3, \sqrt{-5}+1)(7, \sqrt{-5}+3) .
\end{gathered}
$$

Prove these identities.

